About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Knowledge and Data Engineering
Paper
On coupling multiple systems with a global buffer
Abstract
In this paper, we conduct a performance study of coupling multiple systems with a global buffer, and present several results obtained from a multiple-system simulator. This simulator has been run against three workloads, and the coupled system behavior with these three different inputs is studied. Several statistics, including those on local and global buffer hits, page writes to the global buffer, cross-invalidations, and castouts are reported. Their relationship to the degree of data skew is explored. Moreover, in addition to the update-caching approach, a design alternative for the use of a global buffer, namely read-caching, is explored. In read-caching, not only updated pages but also pages read by each node are kept in the global buffer, thereby facilitating other nodes' access to the same pages at the cost of a higher global buffer usage. Also investigated is the case of no-caching, i.e., without using a global buffer. Several simulation results are presented and analyzed. © 1996 IEEE.