About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TC
Paper
On a Pin Versus Block Relationship For Partitions of Logic Graphs
Abstract
Partitions of the set of blocks of a computer logic graph, also called a block graph, into subsets called modules demonstrate that a two-region relationship exists between P, the average number of pins per module, and B, the average number of blocks per module. In the first region, P = KBr, where K is the average number of pins per block and 0.57 ≤ r ≤0.75. In the second region, that is, where the number of modules is small (i.e., 1–5), P is less than predicted by the above formula and is given by a more complex relationship. These conclusions resulted from controlled partitioning experiments performed using a computer program to partition four logic graphs varying in size from 500 to 13 000 circuits representing three different computers. The size of a block varied from one NOR circuit in one of the block graphs to a 30-circuit chip in one of the other block graphs. © 1971, IEEE. All rights reserved.