About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2018
Conference paper
Neural interaction transparency (NIT): Disentangling learned interactions for improved interpretability
Abstract
Neural networks are known to model statistical interactions, but they entangle the interactions at intermediate hidden layers for shared representation learning. We propose a framework, Neural Interaction Transparency (NIT), that disentangles the shared learning across different interactions to obtain their intrinsic lower-order and interpretable structure. This is done through a novel regularizer that directly penalizes interaction order. We show that disentangling interactions reduces a feedforward neural network to a generalized additive model with interactions, which can lead to transparent models that perform comparably to the state-of-the-art models. NIT is also flexible and efficient; it can learn generalized additive models with maximum K-order interactions by training only O(1) models.