About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Negative-temperature coefficients of electrical resistivity in amorphous La-based alloys
Abstract
A negative-temperature coefficient (=-1d dT) of electrical resistivity, (T), has been observed in many amorphous and disordered metallic conductors. The origin of this anomalous temperature dependence of resistivity is still unclear. To explain the negative- anomaly, there are two theoretical approaches (i.e., the Ziman-type theory and the structural Kondo model) currently discussed in the literature. In an attempt to distinguish between these two approaches the resistivity of several liquid-quenched amorphous La-based alloy systems containing Al, Au, Ga, or Ge, has been analyzed as a function of composition and temperature. It is concluded that the resistivity data are inconsistent with the Ziman-type theory and are in favor of the structural Kondo-type model. This conclusion is based on the fact that (1) resistivity varies as -lnT (T100 K) in alloys with negative, and (2) the occurrence of negative is independent of the valence of the La-based alloys. © 1980 The American Physical Society.