About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISVLSI 2019
Conference paper
Near-Memory and In-Storage FPGA Acceleration for Emerging Cognitive Computing Workloads
Abstract
The slow down in Moore's Law has resulted in poor scaling of performance and energy. This slow down in scaling has been accompanied by the explosive growth of cognitive computing applications, creating a demand for high performance and energy efficient solutions. Amidst this climate, FPGA-based accelerators are emerging as a potential platform for deploying accelerators for cognitive computing workloads. However, the slow-down in scaling also limits the scaling of memory and I/O bandwidths. Additionally, a growing fraction of energy is spent on data transfer between off-chip memory and the compute units. Thus, now more than ever, there is a need to leverage near-memory and in-storage computing to maximize the bandwidth available to accelerators, and further improve energy efficiency. In this paper, we make the case for leveraging FPGAs in near-memory and in-storage settings, and present opportunities and challenges in such scenarios. We introduce a conceptual FPGA-based near-data processing architecture, and discuss innovations in architecture, systems, and compilers for accelerating cognitive computing workloads.