About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Trans. Inf. Theory
Paper
Multiple-Layer Integrated Interleaved Codes: A Class of Hierarchical Locally Recoverable Codes
Abstract
The traditional definition of Integrated Interleaved (II) codes generally assumes that the component nested codes are either Reed-Solomon (RS) or shortened Reed-Solomon codes. By taking general classes of codes, we present a recursive construction of Extended Integrated Interleaved (EII) codes into multiple layers, a problem that brought attention in literature for II codes. The multiple layer approach allows for a hierarchical scheme where each layer of the code provides for a different locality. In particular, we present the erasure-correcting capability of the new codes and we show that they are ideally suited as Locally Recoverable codes (LRC) due to their hierarchical locality and the small finite field required by the construction. Properties of the multiple layer EII codes, like their minimum distance and dimension, as well as their erasure decoding algorithms, parity-check matrices and performance analysis, are provided and illustrated with examples. Finally, we will observe that the parity-check matrices of high layer EII codes have low density.