About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SDM 2019
Conference paper
Multi-dimensional graph convolutional networks
Abstract
Convolutional neural networks (CNNs) leverage the great power in representation learning on regular grid data such as image and video. Recently, increasing attention has been paid on generalizing CNNs to graph or network data which is highly irregular. Some focus on graph-level representation learning while others aim to learn node-level representations. These methods have been shown to boost the performance of many graph-level tasks such as graph classification and node-level tasks such as node classification. Most of these methods have been designed for single-dimensional graphs where a pair of nodes can only be connected by one type of relation. However, many real-world graphs have multiple types of relations and they can be naturally modeled as multi-dimensional graphs with each type of relation as a dimension. Multi-dimensional graphs bring about richer interactions between dimensions, which poses tremendous challenges to the graph convolutional neural networks designed for single-dimensional graphs. In this paper, we study the problem of graph convolutional networks for multidimensional graphs and propose a multi-dimensional convolutional neural network model mGCN aiming to capture rich information in learning node-level representations for multi-dimensional graphs. Comprehensive experiments on real-world multi-dimensional graphs demonstrate the effectiveness of the proposed framework.