Journal of Cryptology

More Efficient Oblivious Transfer Extensions

Download paper


Oblivious transfer (OT) is one of the most fundamental primitives in cryptography and is widely used in protocols for secure two-party and multi-party computation. As secure computation becomes more practical, the need for practical large-scale OT protocols is becoming more evident. OT extensions are protocols that enable a relatively small number of “base-OTs” to be utilized to compute a very large number of OTs at low cost. In the semi-honest setting, Ishai et al. (Advances in cryptology—CRYPTO’03, vol 2729 of LNCS, Springer, 2003) presented an OT extension protocol for which the cost of each OT (beyond the base-OTs) is just a few hash function operations. In the malicious setting, Nielsen et al. (Advances in cryptology—CRYPTO’12, vol 7417 of LNCS, Springer, 2012) presented an efficient OT extension protocol for the setting of malicious adversaries that is secure in a random oracle model. In this work, we improve OT extensions with respect to communication complexity, computation complexity, and scalability in the semi-honest, covert, and malicious model. Furthermore, we show how to modify our maliciously secure OT extension protocol to achieve security with respect to a version of correlation robustness instead of the random oracle. We also provide specific optimizations of OT extensions that are tailored to the use of OT in various secure computation protocols such as Yao’s garbled circuits and the protocol of Goldreich–Micali–Wigderson, which reduce the communication complexity even further. We experimentally verify the efficiency gains of our protocols and optimizations.


23 Sep 2016


Journal of Cryptology