About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Model-based invariants for 3-D vision
Abstract
Invariance under a group of 3-D transformations seems a desirable component of an efficient 3-D shape representation. We propose representations which are invariant under weak perspective to either rigid or linear 3-D transformations, and we show how they can be computed efficiently from a sequence of images with a linear and incremental algorithm. We show simulated results with perspective projection and noise, and the results of model acquisition from a real sequence of images. The use of linear computation, together with the integration through time of invariant representations, offers improved robustness and stability. Using these invariant representations, we derive model-based projective invariant functions of general 3-D objects. We discuss the use of the model-based invariants with existing recognition strategies: alignment without transformation, and constant time indexing from 2-D images of general 3-D objects. © 1993 Kluwer Academic Publishers.
Related
Conference paper
Spottune: Transfer learning through adaptive fine-tuning
Conference paper