About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACM Transactions on Algorithms
Paper
Minimizing weighted flow time
Abstract
We consider the problem of minimizing the total weighted flow time on a single machine with preemptions. We give an online algorithm that is O(k)-competitive for k weight classes. This implies an O(log W)-competitive algorithm, where W is the maximum to minimum ratio of weights. This algorithm also implies an O(log n + log P)-approximation ratio for the problem, where P is the ratio of the maximum to minimum job size and n is the number of jobs. We also consider the nonclairvoyant setting where the size of a job is unknown upon its arrival and becomes known to the scheduler only when the job meets its service requirement. We consider the resource augmentation model, and give a (1 + ε)-speed, (1 +1/ε)-competitive online algorithm.