Publication
Communications Physics
Paper

Metastable ferroelectricity driven by depolarization fields in ultrathin Hf0.5Zr0.5O2

Download paper

Abstract

As ferroelectric Hf0.5Zr0.5O2 (HZO) thickness scales below 10 nm, the switching characteristics are severely distorted typically showing an antiferroelectric-like behavior (pinched hysteresis) with reduced remanent polarization. Using Landau-Ginsburg-Devonshire (LGD) theory for the analysis of the experimental results, it is shown here that, in thin (5 nm) HZO, depolarization fields drive the system in a stable paraelectric phase coexisting with a metastable ferroelectric one, which explains the pinched hysteresis. This state of matter resembles a first order ferroelectric above the Curie temperature which is known to result in similar double-loop behavior. Here, based on the analysis of experimental data in the framework of LGD theory, it is reported that charge injection and trapping at pre-existing interface defects during field cycling (“wake-up”) screens the depolarization field stabilizing ferroelectricity. It is found in particular that a sufficiently large energy density of interface states is beneficial for the recovery of fully open ferroelectric loops.