About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Superconductivity
Paper
Memory-processor interface with hybrid CMOS-RSFQ echnology
Abstract
The lack of high density memories at 4 K has severely constrained the applications of digital Josephson electronics. Superconductor-semiconductor hybrid technology can take advantage of the high speed of a superconductor processor and the high density of a semiconductor memory and make superconducting electronics applicable. Currently we are developing a hybrid memory system to achieve low power (135 mW) and high speed (128 Gb/s) data access between a 16 GHz 8-bit superconducting rapid single flux quantum (RSFQ) vector processor and a 512 kbit complimentary metal-oxide silicon (CMOS) memory system. In this paper, we give a detailed description of both the high-level system organization and low-level circuit design, as well as simulation and test results for some circuit components of this hybrid RSFQ-CMOS memory-processor interface. © 1999 Elsevier Science Ltd. All rights reserved.