About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
BIBM 2017
Conference paper
Mapping client messages to a unified data model with mixture feature embedding convolutional neural network
Abstract
Data mapping among different data standards in health institutes is often a necessity when data exchanges occur among different institutes. However, no matter rule-based approaches or traditional machine learning methods, none of these methods have achieved satisfactory results yet. In this work, we propose a deep learning method, mixture feature embedding convolutional neural network (MfeCNN), to convert the data mapping to a multiple classification problem. Multi-modal features were extracted from different semantic space with a medical NLP package and powerful feature embeddings were generated by MfeCNN. Classes as many as ten were classified simultaneously by a fully-connected soft-max layer based on multi-view embedding. Experimental results show that our proposed MfeCNN achieved best results than traditional state-of-the-art machine learning models and also much better results than the convolutional neural network of only using bag-of-words as inputs.