About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IS&T/SPIE Electronic Imaging 1993
Conference paper
Lossy compression of palettized images
Abstract
Many digital display systems economize by rendering color images with the use of a limited palette. Palettized images differ from continuous-tone images in two important ways: they are less continuous due their use of lookup table indices instead of physical intensity values, and pixel values may be dithered for better color rendition. These image characteristics reduce the spatial continuity of the image, leading to high bit rates and low image quality when compressing these images using a conventional lossy coder. We present an algorithm that uses a debinarization technique to approximate the original continuous-tone image, before palettization. The color components of the reconstructed image are then compressed using standard lossy compression techniques. The decoded images must be color quantized to obtain a palettized image. We compare our results with a second algorithm that applies a combination of lossy and lossless compression directly to the color quantized image in order to avoid color quantization after decoding.