About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISBI 2009
Conference paper
Lesion detection and segmentation in uterine cervix images using an ARC-level mRF
Abstract
This study develops a procedure for automatic extraction and segmentation of a class-specific object (or region) by learning class-specific boundaries. We present and evaluate the method with a specific focus on the detection of lesion regions in uterine cervix images. The watershed map of the input image is modeled using MRF in which watershed regions correspond to binary random variables indicating whether the region is part of the lesion tissue or not. The local pairwise factors on the arcs of the watershed map indicate whether the arc is part of the object boundary. The factors are based on supervised learning of a visual word distribution. Final lesion region segmentation is obtained using a loopy belief propagation applied to the watershed arc-level MRF. Experimental results on real data show state-of-the-art segmentation resultsin this very challenging task. If needed, the results can be interactively even improved. © 2009 IEEE.