Abstract
In the research of public health, psychology, and social sciences, many research questions investigate the relationship between a categorical outcome variable and continuous predictor variables. The focus of this paper is to develop a model to build this relationship when both the categorical outcome and the predictor variables are latent (i.e. not observable directly). This model extends the latent class regression model so that it can include regression on latent predictors. Maximum likelihood estimation is used and two numerical methods for performing it are described: the Monte Carlo expectation and maximization algorithm and Gaussian quadrature followed by quasi-Newton algorithm. A simulation study is carried out to examine the behavior of the model under different scenarios. A data example involving adolescent health is used for demonstration where the latent classes of eating disorders risk are predicted by the latent factor body satisfaction.