About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Review
Investigations of a new impact ionization model for submicron devices
Abstract
We discuss the device applications of a new impact ionization model. This model is based on a new formulation of the impact ionization rate for bulk semiconductors, derived from solvable high-field Boltzmann transport equations. The model inputs are relaxation times which simulate the dominant electron-phonon scatterings and are calibrated by realistic Monte Carlo simulations. Our impact ionization model is shown to be physically motivated and is easily implemented in the standard hydrodynamic device simulators II FIELDS and FIELDAY. An efficient numerical scheme is used to simulate three thin-base silicon bipolar transistors. Results based on this impact ionization model are found to agree well with the experimental multiplication factors over a large range of applied voltages. These results are contrasted with the more phenomenological treatment of Scholl and Quade which is shown to be a low-field limit of our model. © 1993, MCB UP Limited