IEEE Transactions on Electronics Packaging Manufacturing

Interfacial reaction studies on lead (Pb)-free solder alloys

View publication


Recently, the research and development activities for replacing Pb-containing solders with Pb-free solders have been intensified due to both competitive market pressures and environmental issues. As a result of these activities, a few promising candidate solder alloys have been identified, mainly, Sn-based alloys. A key issue affecting the integrity and reliability of solder joints is the interfacial reactions between a molten solder and surface finishes in the solder joint structures. In this paper, a fundamental study of the interfacial reactions between several Pb-free candidate solders and surface finishes commonly used in printed-circuit cards is reported. The Pb-free solders investigated include Sn-3.5 Ag, Sn-3.8 Ag-0.7 Cu, and Sn-3.5 Ag-3.0 Bi. The surface finishes investigated include Cu, Au/Ni(P), Au/Pd/Ni(P), and Au/Ni (electroplated). The reaction kinetics of the dissolution of surface finishes and intermetallic compound growth have been measured as a function of reflow temperature and time. The intermetallic compounds formed during reflow reactions have been identified by SEM with energy dispersive x-ray spectroscopy.