About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry B
Paper
Interfacial chemistry of pentacene on clean and chemically modified silicon (001) surfaces
Abstract
The interactions between pentacene and the Si(001)-(2 × 1) surface have been investigated using Fourier transform infrared spectroscopy (FTIR), ultraviolet photoelectron spectroscopy (UPS), and X-ray photoelectron spectroscopy (XPS). The pentacene molecules in the first layer react with the Si surface atoms through the C=C double bonds and via cleavage of C-H bonds. This chemisorption is accompanied by disruption of the conjugated π electron system. The disrupted interfacial layer is stable throughout deposition and evaporation of thicker pentacene films. Pentacene molecules in layers beyond the first layer adsorb molecularly and yield well-defined valence band features that are characteristic of a conjugated π electron system. Functionalization of the Si surface with a monolayer of cyclopentene inhibits dissociation of subsequently deposited pentacene molecules.