About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Inhomogeneous broadening by nuclear spin fields: A new limit for optical transitions in solids
Abstract
Using a low-strain, isotopically pure crystal of YLiF4, we have measured extremely narrow inhomogeneous linewidths (as low as 40 MHz) for the optical transitions of Er3+ impurities. Inhomogeneous broadening due to strains and other defects is so low that a new mechanism limits the inhomogeneous linewidth: local magnetic fields due to fluorine nuclear spins. These ultranarrow lines enabled us to make the first direct measurement of the isotope shifts of f-f transitions in a solid, and we find for the isotopes Er164, Er166, Er168, and Er170 a shift of 76±2 MHz unit mass on the 4I15/2(1)4F9/2(1) transition. We show that this is consistent with a mechanism of coupling to zero-point vibrations. © 1992 The American Physical Society.