About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2003
Conference paper
In question answering, two heads are better than one
Abstract
Motivated by the success of ensemble methods in machine learning and other areas of natural language processing, we developed a multi-strategy and multi-source approach to question answering which is based on combining the results from different answering agents searching for answers in multiple corpora. The answering agents adopt fundamentally different strategies, one utilizing primarily knowledge-based mechanisms and the other adopting statistical techniques. We present our multi-level answer resolution algorithm that combines results from the answering agents at the question, passage, and/or answer levels. Experiments evaluating the effectiveness of our answer resolution algorithm show a 35.0% relative improvement over our baseline system in the number of questions correctly answered, and a 32.8% improvement according to the average precision metric.