About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IBM J. Res. Dev
Paper
Improving the memory-system performance of sparse-matrix vector multiplication
Abstract
Sparse-matrix vector multiplication is an important kernel that often runs inefficiently on superscalar RISC processors. This paper describes techniques that increase instruction-level parallelism and improve performance. The techniques include reordering to reduce cache misses (originally due to Das et al.), blocking to reduce load instructions, and prefetching to prevent multiple load-store units from stalling simultaneously. The techniques improve performance from about 40 MFLOPS (on a well-ordered matrix) to more than 100 MFLOPS on a 266-MFLOPS machine. The techniques are applicable to other superscalar RISC processors as well, and have improved performance on a Sun UltraSPARC™ I workstation, for example.