About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IRPS 2023
Conference paper
Impact of Gate Stack Thermal Budget on NBTI Reliability in Gate-All-Around Nanosheet P-type Devices
Abstract
NBTI impact from gate stack thermal budget in Gate-All-Around Nanosheet (GAA NS) architecture is presented in this work. Varying effects of post high-k deposition anneal (PDA), spike-anneal (SA), and laser annealing (LSA) are studied in terms of the NBTI-induced threshold voltage shifts. It is observed that the NBTI, gate leakage, and mobility are significantly modulated by interfacial layer (IL) formation and Nitrogen (N) concentration from varying annealing and thermal budget. Optimized thermal process is identified to improve NBTI reliability without mobility and gate leakage degradation.