About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICPR 2000
Conference paper
Impact of feature correlations on separation between bivariate normal distributions
Abstract
The impact of feature correlations on class separation has received limited attention from researchers. Previous reports treat the problem from the viewpoint of multi-classifier fusion and are partially inconsistent in their conclusions. In this paper we show that these ambiguities are the result of incompatible basic assumptions, and that the conclusions from prior art hold only for specific configurations of class-conditional distributions. We show that the impact of feature correlations on class separation between two bivariate normal distributions can be positive or negative, and that it can only be gauged in the context of the parameters of involved marginals. The findings reported in this paper are of importance for the practice of feature extraction, feature selection, and in multi-classifier fusion. © 2008 IEEE.