About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CVPRW 2019
Conference paper
Identifying interpretable action concepts in deep networks
Abstract
A number of recent methods to understand neural networks have focused on quantifying the role of individual features. One such method, NetDissect identifies interpretable features of a model using the Broden dataset of visual semantic labels (colors, materials, textures, objects and scenes). Given the recent rise of a number of action recognition datasets, we propose extending the Broden dataset to include actions to better analyze learned action models. We describe the annotation process and results from interpreting action recognition models on the extended Broden dataset.