About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Physics Letters
Review
Hole limited recombination in polymer light-emitting diodes
Abstract
By comparing the quantum efficiencies of light emission in a series of poly[2-methoxy-5(2′ethyl)hexoxy-phenylenevinylene] diodes with calcium cathodes and various anode metals, we show that, in all cases electrons are the majority carrier and recombination is limited by hole injection. These conclusions are confirmed by the examination of a second series of samples in which alkanethiol barrier layers of varying thickness, are deposited on a gold anode. The highest external quantum efficiency was achieved in these experiments using a clean, semitransparent gold anode. We suggest that electron and hole injection rates play the primary role in determining current balance and that mobilities play a minor role. © 1999 American Institute of Physics.