About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IA3 2018
Conference paper
High-Performance GPU Implementation of PageRank with Reduced Precision Based on Mantissa Segmentation
Abstract
We address the acceleration of the PageRank al- gorithm for web information retrieval on graphics processing units (GPUs) via a modular precision framework that adapts the data format in memory to the numerical requirements as the iteration converges. In detail, we abandon the IEEE 754 single- and double-precision number representation formats, employed in the standard implementation of PageRank, to instead store the data in memory in some specialized formats. Furthermore, we avoid the data duplication by leveraging a data layout based on mantissa segmentation. Our evaluation on a V100 graphics card from NVIDIA shows acceleration factors of up to 30% with respect to the standard algorithm operating in double-precision.