About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEDM 2012
Conference paper
High mobility high-κ-all-around asymmetrically-strained Germanium nanowire trigate p-MOSFETs
Abstract
We demonstrate for the first time, asymmetrically strained Ge, high-κ/metal gate nanowire (NW) trigate p-MOSFETs with record hole mobility of 1490 cm2/Vs. This mobility is 2x above on-chip, biaxially strained Ge planar FETs and ∼15x above Si universal mobility. The fabrication approach features: (1) a new strained Si/strained Ge/HfO2 NW channel materials stack, with HfO2 dielectric at the bottom which acts as an excellent etch stop for top-down NW formation, and also unpins the back Ge-dielectric interface, (2) large compressive biaxial strain (∼2.5%) that is built into the channel material prior to layer transfer, and (3) lateral strain relaxation by nanoscale patterning of the channel. The resulting asymmetric strain distribution dramatically reduces the conductivity effective mass. 6×6 k.p quantum mechanical simulations predict an increase in the Ge NW average inverse effective mass by a factor of 1.6 relative to planar biaxially strained Ge, consistent with the measured 2x mobility enhancement. © 2012 IEEE.