About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
HAI-GEN+user2agent 2023
Conference paper
Helping Therapists with NLP-Annotated Recommendation
Abstract
We propose a recommendation system that suggests treatment strategies to a therapist during the psychotherapy session in real-time. Our system uses a turn-level rating mechanism that predicts the therapeutic outcome by computing a similarity score between the deep embedding of a scoring inventory, and the current sentence that the patient is speaking. The system automatically transcribes a continuous audio stream and separates it into turns of the patient and of the therapist and perform real-time inference of their therapeutic working alliance. The dialogue pairs along with their computed working alliance as ratings are then fed into a deep reinforcement learning recommendation system where the sessions are treated as users and the topics are treated as items. Other than evaluating the empirical advantages of the core components on an existing dataset of psychotherapy sessions, we demonstrate the effectiveness of this system in a web app.