About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Green-function cellular method for the electronic structure of molecules and solids
Abstract
A technique for obtaining rigorous solutions to the single-electron Schrödinger equation for solids and molecules, the Green-function cellular method (GFCM), is described. The technique is similar to full-potential multiple-scattering theory in that basis functions which are locally exact solutions to the Schrödinger equation within each potential cell are used to represent the wave function. Unlike multiple-scattering theory, however, the coefficients of expansion for the wave function are determined by a secular matrix which couples only nearest-neighbor cells. The matrix elements are Wronskian-like integrals over cell surfaces which may be chosen independently for each atomic cell. Similarly to multiple-scattering theory, the GFCM can be used to calculate the system Green function directly. As a special case, the GFCM formalism can be used to calculate the structure constants of Korringa-Kohn-Rostoker theory without using Ewald sums. Numerical calculations of the energy bands of fcc Cu illustrate the speed and flexibility of the method. A simple linearization scheme which allows the use of multiple energy panels without introducing discontinuities in the energy bands is used in these calculations. © 1992 The American Physical Society.