About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Paper
Full-wave PEEC time-domain method for the modeling of on-chip interconnects
Abstract
With the advances in the speed of high-performance chips, inductance effects in some on-chip interconnects have become significant. Specific networks such as clock distributions and other highly optimized circuits are especially impacted by inductance. Several difficult aspects have to be overcome to obtain valid waveforms for problems where inductances contribute significantly. Mainly, the geometries are very complex and the interactions between the capacitive and inductive currents have to be taken into account simultaneously. In this paper, we show that a full-wave partial element equivalent circuit method, which includes the delays among the partial elements, leads to an efficient solver enabling the analysis of large meaningful problems. Applying this method to several examples leads to helpful insights for realistic very large scale integration wiring problems. It is shown in this paper that the impact overshoot, reflections, and inductive coupling are critical for the design of critical on-chip interconnects.