About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Paper
Front stability in mean-field models of diffusion-limited growth
Abstract
We present calculations of the stability of planar fronts in two mean-field models of diffusion-limited growth. The steady state solution for the front can exist for a continuous family of velocities, and we show that the selected velocity is given by marginal stability theory. We find that a naive mean-field theory has no instability to transverse perturbations, while a threshold mean-field theory has a Mullins-Sekerka instability. These results place on firm theoretical ground the observed lack of the dendritic morphology in naive mean-field theory and its presence in threshold models. The existence of a Mullins-Sekerka instability is related to the behavior of the mean-field theories in the zero-undercooling limit. © 1996 The American Physical Society.