About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACM TOMS
Paper
Firedrake: Automating the finite element method by composing abstractions
Abstract
Firedrake is a new tool for automating the numerical solution of partial differential equations. Firedrake adopts the domain-specific language for the finite element method of the FEniCS project, but with a pure Python runtime-only implementation centered on the composition of several existing and new abstractions for particular aspects of scientific computing. The result is a more complete separation of concerns that eases the incorporation of separate contributions from computer scientists, numerical analysts, and application specialists. These contributions may add functionality or improve performance. Firedrake benefits from automatically applying new optimizations. This includes factorizing mixed function spaces, transforming and vectorizing inner loops, and intrinsically supporting block matrix operations. Importantly, Firedrake presents a simple public API for escaping the UFL abstraction. This allows users to implement common operations that fall outside of pure variational formulations, such as flux limiters.