About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIAM Journal on Computing
Paper
Fast approximate graph partitioning algorithms
Abstract
We study graph partitioning problems on graphs with edge capacities and vertex weights. The problems of b-balanced cuts and k-balanced partitions are unified into a new problem called minimum capacity ρ-separators. A ρ-separator is a subset of edges whose removal partitions the vertex set into connected components such that the sum of the vertex weights in each component is at most ρ times the weight of the graph. We present a new and simple O(log n)-approximation algorithm for minimum capacity ρ-separators which is based on spreading metrics yielding an O(log n)-approximation algorithm both for b-balanced cuts and k-balanced partitions. In particular, this result improves the previous best known approximation factor for k-balanced partitions in undirected graphs by a factor of O(log k). We enhance these results by presenting a version of the algorithm that obtains an O(log OPT)-approximation factor. The algorithm is based on a technique called spreading metrics that enables us to formulate directly the minimum capacity ρ-separator problem as an integer program. We also introduce a generalization called the simultaneous separator problem, where the goal is to find a minimum capacity subset of edges that separates a given collection of subsets simultaneously. We extend our results to directed graphs for values of ρ≥1/2. We conclude with an efficient algorithm for computing an optimal spreading metric for ρ-separators. This yields more efficient algorithms for computing b-balanced cuts than were previously known.