About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IBM J. Res. Dev
Paper
Fast and effective algorithms for graph partitioning and sparse-matrix ordering
Abstract
Graph partitioning is a fundamental problem in several scientific and engineering applications. In this paper, we describe heuristics that improve the state-of-the-art practical algorithms used in graph-partitioning software in terms of both partitioning speed and quality. An important use of graph partitioning is in ordering sparse matrices for obtaining direct solutions to sparse systems of linear equations arising in engineering and optimization applications. The experiments reported in this paper show that the use of these heuristics results in a considerable improvement in the quality of sparse-matrix orderings over conventional ordering methods, especially for sparse matrices arising in linear programming problems. In addition, our graph-partitioning-based ordering algorithm is more parallelizable than minimum-degree-based ordering algorithms, and it renders the ordered matrix more amenable to parallel factorization.