About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICLR 2021
Workshop paper
Fairly Estimating Socioeconomic Status Under Costly Feature Acquisition
Abstract
Predictive models have become increasingly ubiquitous in our society. However, concern has been expressed on their ability to perpetuate inequality amongst subpopulations. Active feature-value acquisition has been suggested as a method of promoting both individual and group notions of fairness in a predictive model. In this work, we seek to use such active framework to create a predictive socioeconomic model. At the same time, satellite imagery has been utilized as a method of socioeconomic estimation. In this work, our goal is to integrate satellite imagery with an active framework to create a fair predictive socioeconomic model. This was tested on one real-world dataset. Results indicate an increase in accuracy resulting from the aggregation of the satellite imagery.