About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Middleware/WOSC 2019
Conference paper
FaAS orchestration of parallel workloads
Abstract
Function as a Service (FaaS) is based on a reactive programming model where functions are activated by triggers in response to cloud events (e.g., objects added to an object store). The inherent elasticity and the pay-per-use model of serverless functions make them very appropriate for embarrassingly parallel tasks like data preprocessing, or even the execution of MapReduce jobs in the cloud. But current Serverless orchestration systems are not designed for managing parallel fork-join workflows in a scalable and efficient way. We demonstrate in this paper that existing services like AWS Step Functions or Azure Durable Functions incur in considerable overheads, and only Composer at IBM Cloud provides suitable performance. Successively, we analyze the architecture of OpenWhisk as an open-source FaaS systems and its orchestration features (Composer). We outline its architecture problems and propose guidelines for orchestrating massively parallel workloads using serverless functions.