About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2011
Conference paper
Exemplar-based sparse representation phone identification features
Abstract
Exemplar-based techniques, such as k-nearest neighbors (kNNs) and Sparse Representations (SRs), can be used to model a test sample from a few training points in a dictionary set. In past work, we have shown that using a SR approach for phonetic classification allows for a higher accuracy than other classification techniques. These phones are the basic units of speech to be recognized. Motivated by this result, we create a new dictionary which is a function of the phonetic labels of the original dictionary. The SR method now selects relevant samples from this new dictionary to create a new feature representation of the test sample, where the new feature is better linked to the actual units to be recognized. We will refer to these new features as S pif. We present results using these new Spif features in a Hidden Markov Model (HMM) framework for speech recognition. We find that the Spif features allow for a 2.9% relative reduction in Phonetic Error Rate (PER) on the TIMIT phonetic recognition task. Furthermore, we find that the Spif features allow for a 4.8% relative improvement in Word Error Rate (WER) on a large vocabulary 50 hour Broadcast News task. © 2011 IEEE.