About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Physical Chemistry A
Paper
Energy transfer within Zn-porphyrin dendrimers: Study of the singlet-singlet annihilation kinetics
Abstract
In this article, we explore energy transfer processes within a series of Zn-porphyrin-appended dendrimers by means of excitation intensity dependent transient absorption measurements. We report singlet-singlet annihilation on two distinct time scales of 18 ± 5 ps and 130 ± 10 ps in the dimer and the dendrimers. The two distinct processes reflect the presence of two structural conformer distributions. Analysis of the singlet-singlet annihilation transient kinetics shows that sequential annihilation occurs within subunits up to four Zn-porphyrins in the dendrimers. The onset of the singlet-singlet annihilation process depending on the size of the molecule reveals a difference in the number of communicating Zn-porphyrins. We further report a full characterization of the transient absorption kinetics of the monomer over a spectral range from 450 to 730 nm. © 2005 American Chemical Society.