About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Int. J. Solids Struct.
Paper
Elastic analysis of some punch problems for a layered medium
Abstract
The problems of flat-ended cylindrical, quadrilateral, and triangular punches indenting a layered isotropic elastic half-space are considered. The former two are analyzed using a basis function technique, while the latter problem is analyzed via a singular integral equation. Solutions are obtained numerically. Load-deflection relations are obtained for a series of values of the ratio of Young's modulus in the layer and substrate, and for a variety of punch sizes. These solutions provide an accurate basis for the estimation of Young's modulus of thin films from the initial unloading compliance observed in indentation tests, and are specifically relevant to axisymmetric, Vicker's, and triangular indenters. The results should also be of interest in foundation engineering. © 1987.