About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Systems and Software
Paper
Efficient quality-driven source selection from massive data sources
Abstract
The query based on massive database is time-consuming and difficult. And the uneven quality of data source makes the multiple source selection more challenging. The low-quality data source can even make the result of the information unexpected. How to efficiently select quality-driven data sources on massive database remains a hard problem. In this paper, we study the efficient source selection problem on massive data set considering the quality of data sources. Our approach evaluates the quality of data source and balances the limitation of resources and the completeness of data source. For data source selection for a specific query, our method could select the data sources with the number of keywords larger than a given threshold. And the selected sources are ranked according to the values of information in data sources. Experimental results demonstrate that our method can scale to millions of data sources and perform pretty efficiently.