Publication
ACM TISSEC
Paper

Dynamic and efficient key management for access hierarchies

View publication

Abstract

Hierarchies arise in the context of access control whenever the user population can be modeled as a set of partially ordered classes (represented as a directed graph). A user with access privileges for a class obtains access to objects stored at that class and all descendant classes in the hierarchy. The problem of key management for such hierarchies then consists of assigning a key to each class in the hierarchy so that keys for descendant classes can be obtained via efficient key derivation. We propose a solution to this problem with the following properties: (1) the space complexity of the public information is the same as that of storing the hierarchy; (2) the private information at a class consists of a single key associated with that class; (3) updates (i.e., revocations and additions) are handled locally in the hierarchy; (4) the scheme is provably secure against collusion; and (5) each node can derive the key of any of its descendant with a number of symmetric-key operations bounded by the length of the path between the nodes. Whereas many previous schemes had some of these properties, ours is the first that satisfies all of them. The security of our scheme is based on pseudorandom functions, without reliance on the Random Oracle Model. © 2009 ACM.

Date

01 Jan 2009

Publication

ACM TISSEC

Authors

Topics

Share