About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Doping dependence of the barrier height of palladium-silicide Schottky-diodes
Abstract
Capacitance-voltage and current-voltage measurements have been used to determine the barrier height of palladium-silicon Schottky diodes. All diodes were heat-treated to form palladium silicide and the doping range of the silicon was varied in the range 5 × 1015 cm-3 to 2 × 1018 cm-3. The zero-electric-field (flat-band) barrier height was found to be independent of doping concentration in the above range, having a value 0·75 ± 0·01 eV. On the other hand the zero-bias barrier height is more electric-field dependent than the predictions of the usual image-force theory. However, the results are well described by an additional barrier lowering term of the approximate form Δφ = -χmε{lunate}m where ε{lunate}m is the maximum junction electric-field and χm a characteristic length in the region of 20-40 Å. © 1971.