About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SCML 2024
Conference paper
Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks
Abstract
Pharmacometric models are pivotal across drug discovery and development, playing a decisive role in determining the progression of candidate molecules. However, the derivation of mathematical equations governing the system is a labor-intensive trial-and-error process, often constrained by tight timelines. In this study, we introduce PKINNs, a novel purely data-driven pharmacokinetic-informed neural network model. PKINNs efficiently discovers and models intrinsic multi-compartment-based pharmacometric structures, reliably forecasting their derivatives. The resulting models are both interpretable and explainable through Symbolic Regression methods. Our computational framework demonstrates the potential for closed-form model discovery in pharmacometric applications, addressing the labor-intensive nature of traditional model derivation. With the increasing availability of large datasets, this framework holds the potential to significantly enhance model-informed drug discovery.