About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Complex Networks
Paper
Directed random geometric graphs
Abstract
Many real-world networks are intrinsically directed. Such networks include activation of genes, hyperlinks on the internet and the network of followers on Twitter among many others. The challenge, however, is to create a network model that has many of the properties of real-world networks such as power-law degree distributions and the small-world property. To meet these challenges, we introduce the Directed Random Geometric Graph (DRGG) model, which is an extension of the random geometric graph model. We prove that it is scale-free with respect to the indegree distribution, has binomial outdegree distribution, has a high clustering coefficient, has few edges and is likely small-world. These are some of the main features of aforementioned real-world networks. We also empirically observed that word association networks have many of the theoretical properties of the DRGG model.