About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAAI/IAAI 2012
Conference paper
Diagnosing changes in an ontology stream: A DL reasoning approach
Abstract
Recently, ontology stream reasoning has been introduced as a multidisciplinary approach, merging synergies from Artificial Intelligence, Database and World-Wide-Web to reason on semantics-augmented data streams, thus a way to answering questions on real time events. However existing approaches do not consider stream change diagnosis i.e., identification of the nature and cause of changes, where explaining the logical connection of knowledge and inferring insight on time-changing events are the main challenges. We exploit the Description Logics (DL)-based semantics of streams to tackle these challenges. Based on an analysis of stream behavior through change and inconsistency over DL axioms, we tackled change diagnosis by determining and constructing a comprehensive view on potential causes of inconsistencies. We report a large-scale evaluation of our approach in the context of live stream data from Dublin City Council. Copyright © 2012, Association for the Advancement of Artificial Intelligence. All rights reserved.