About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2020
Conference paper
Decentralized Min-Max Optimization: Formulations, Algorithms and Applications in Network Poisoning Attack
Abstract
This paper discusses formulations and algorithms which allow a number of agents to collectively solve problems involving both (non-convex) minimization and (concave) maximization operations. These problems have a number of interesting applications in information processing and machine learning, and in particular can be used to model an adversary learning problem called network data poisoning. We develop a number of algorithms to efficiently solve these non-convex min-max optimization problems, by combining techniques such as gradient tracking in the decentralized optimization literature and gradient descent-ascent schemes in the min-max optimization literature. Also, we establish convergence to a first order stationary point under certain conditions. Finally, we perform experiments to demonstrate that the proposed algorithms are effective in the data poisoning attack.