About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Nano
Paper
Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures
Abstract
Plasmons in graphene nanostructures show great promise for mid-infrared applications ranging from a few to tens of microns. However, mid-infrared plasmonic resonances in graphene nanostructures are usually weak and narrow-banded, limiting their potential in light manipulation and detection. Here, we investigate the coupling among graphene plasmonic nanostructures and further show that, by engineering the coupling, enhancement of light-graphene interaction strength and broadening of spectral width can be achieved simultaneously. Leveraging the concept of coupling, we demonstrate a hybrid two-layer graphene nanoribbon array which shows 5-7% extinction within the entire 8-14 μm (∼700-1250 cm-1) wavelength range, covering one of the important atmosphere "infrared transmission windows". Such coupled hybrid graphene plasmonic nanostructures may find applications in infrared sensing and free-space communications.