About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Mechanical Design, Transactions of the ASME
Paper
Computational kinematic analysis of higher pairs with multiple contacts
Abstract
We present a computational kinematic theory of higher pairs with multiple contacts, including simultaneous contacts, intermittent contacts, and changing contacts. The theory systematizes single- and multiple-contact kinematic analysis by mapping it into geometric computation in configuration space. It derives the contact conditions, contact functions, and relations between contacts from the shapes and degrees of freedom of the parts. It helps identify common design flaws, such as undercutting, interference, and jamming, that cannot be systematically identified with current methods. We describe a program for the most common pairs: planar higher pairs with two degrees of freedom. © 1995 by ASME.