Acta Materialia

Compositional effects in Ag2ZnSnSe4 thin films and photovoltaic devices

View publication


Ag2ZnSnSe4 (AZTSe) is a relatively new n-type photovoltaic (PV) absorber material which has recently demonstrated a conversion efficiency of ∼5% in a Schottky device architecture. To date, little is known about how the influence of composition on AZTSe material properties and the resulting PV performance. In this study, the Ag/Sn ratio is shown to be critical in the controlling grain growth, non-radiative recombination, and the bulk defect structure of the absorber. Insufficient Ag (relative to Zn and Sn) results in small grains, low photoluminescence intensities, and band gap narrowing, possibly due to an increase in the bulk defect density. Additionally, etching the AZTSe films in KCN prior to junction formation is found to be important for achieving reproducible efficiencies. Surface analysis using Auger Nanoprobe Microscopy analysis reveals that a KCN etch can selectively remove potentially harmful Ag-rich secondary phases, therefore improving the MoO3/AZTSe junction quality. Moreover, grain boundaries in AZTSe are found to be enriched in Sn and O following KCN; the role this oxide plays in surface passivation and junction formation has yet to be determined.